Script for downloading tournament data

Follow some plots of the data from rounds 300 to 332

First we plot the well known problem of TC being very poorly correlated with other metrics, such as model correlation and fncV3.

Model TC vs CORR

Model TC vs FncV3

Same information but shown by round:

Model TC vs CORR by Round

Model TC vs FncV3 by Round

Now I want to see if the relationship of TC with CORR and FNCV3 is somehow influenced by “Model Correlation with Meta Model” or stake amount. So i split the “Model Correlation with Meta Model” and the stake amount in 9 bins.

Model TC vs CORR by Correlation with Meta Model

Model TC vs FNCV3 by Correlation with Meta Model

Model TC vs CORR by Stake

Model TC vs FNCV3 by Stake

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

df = pd.read_csv('rounds-300-332.csv')

sns.jointplot(data=df, x='corr', y='tc', kind="reg", truncate=False)
sns.jointplot(data=df, x='fncV3', y='tc', kind="reg", truncate=False)

plt.show()

TCvsCORR = df.groupby(['roundNumber']).apply(lambda x: x.tc.corr(x['corr']))
TCvsCORR.name='PearsonCoeff(TC,CORR)'
pd.DataFrame(TCvsCORR).reset_index().plot(x='roundNumber',y='PearsonCoeff(TC,CORR)',kind='line')

TCvsFNCV3 = df.groupby(['roundNumber']).apply(lambda x: x.tc.corr(x['fncV3']))
TCvsFNCV3.name='PearsonCoeff(TC,FNCV3)'
pd.DataFrame(TCvsFNCV3).reset_index().plot(x='roundNumber',y='PearsonCoeff(TC,FNCV3)',kind='line')

plt.show()

df['corrWMetamodelBin'] = pd.cut(df['corrWMetamodel'], 9, labels=False)
df['stakeBin'] = pd.qcut(df['selectedStakeValue'].rank(method='first'), 9, labels=False)

sns.lmplot(data=df, x='corr', y='tc', col='stakeBin', col_wrap=3, truncate=False, scatter_kws={"alpha": 0.6})
sns.lmplot(data=df, x='fncV3', y='tc', col='stakeBin', col_wrap=3, truncate=False, scatter_kws={"alpha": 0.6})

sns.lmplot(data=df, x='corr', y='tc', col='corrWMetamodelBin', col_wrap=3, truncate=False, scatter_kws={"alpha": 0.6})
sns.lmplot(data=df, x='fncV3', y='tc', col='corrWMetamodelBin', col_wrap=3, truncate=False, scatter_kws={"alpha": 0.6})

plt.show()

1 Like